

2軸ガルバノユニット

コンパクトな工業デザインのために

- SL2-100 プロトコル 20 ビット、または XY2-100 プロトコル 16ビット
- デジタル制御による、低ノイズおよび低ドリフト
- ■産業用の強靭で防塵性
- 各種ミラー基板・コーティング、マーキング・洗浄用
- 入力口径: 14 mm

デジタル制御による高速なマーキングスピード

メリット

新しいMINISCAN IIIは、非常に安定したデジタル制御を提供します。これにより、ノイズとドリフト値がさらに改善され、システムの信頼性と堅牢性がさらに向上します。デジタルインターフェースでは、XY2-100 16 ビットとSL2-100 20 ビットの両方のプロトコルを使用できます。対応するケーブルがプロトコルの使用を定義します。

多種多様なコンフィギュレーション

多くの標準的なレーザーの種類、波長、出力密度、焦点距離、および加工領域に対して、構成可能な貫通レンズ、保護ガラス、ならびにミラー基板およびコーティングが利用可能である。これは、最良の品質および最適化されたスループットで広範囲のタスクを処理することを可能にする。また、あなたのアプリケーションのための完全な構成をまとめることが可能です。

代表的用途

通常のアプリケーションとしては、高速での表面のアブレーションおよびクリーニング、ならびに困難なマーキング作業が挙げられる。デジタル制御とパワフルなPWM出力段のおかげで、速度と動的応答が保証されます。また、MINISCAN IIIとカメラアダプタ、マシンビジョンを組み合わせることもできます。プロセス監視用のコンポーネントを制御します。

イノベーションと品質

RAYLASEでは、イノベーションと高い品質水準の維持を最優先課題としています。すべての製品は、独自の研究所や生産設備で開発・建設・試験を行っています。世界中のサポートネットワークを通じて、お客様に最高のメンテナンスと迅速なサービスを提供することができます。

MINISCAN III-14

2軸ガルバノユニット

コンパクトな工業デザインのために

一般仕様

電圧	+30 または+48 V	
電流	2 A, RMS、	
	最大 5 A	
リップル	最大200 mVpp、	
/ノイズ	@ 20MHz 帯域幅	
周囲温度		
保存温度		
湿度		
IP⊐-ド		
	XY2-100- 拡張プロトコル	
ディジタル	SL2-100プロトコル	
	電流 リップル /ノイズ	

典型的な振り角(光学的)		± 0.393 rad	
分解能 XY2-100 16 ビット		12 µrad	
分解能 SL2-100 20 ビット		0.76 μrad	
 繰り返し精度(RMS)		< 2.0 μrad	
位置ノイズ(RMS)		< 4.5 μrad	
温度ドリフト	最大。Gaindrift ¹	15ppm/K	
	最大。Offsetdrift ¹	10 μrad/K	
長期ドリフト 8 h ¹		< 80 µrad	

APERTURE依存仕様-機械的データー般仕様

ガルバノユニット	MINISCANIII-14 SI MINISCANIII-14 QU	
入力口径(mm)	14	14
ビーム変位量(mm)	17.0	17.0
質量(F-thetaレンズなし)(kg)	2.0	2.0
寸法(L x W x H) [mm]	134.0 x 98.0 x 100.3 134.0 x 98.0 x 100.3	

MIRRORバリエーション

波長	基板
355 nm	SI
532 nm	SI
1,064 nm	SI
1,070 nm	QU
10,600 nm	SI

TUNING

チューニング	説明		
Vector-Tuning (VC)	処理速度を重視した幅広い用途に最適化されたチューニング		
Marking-Tuning (MA) マーキングアプリケーション用に最適化されたチューニング			
Cleaning-Tuning (C)	長尺ベクトルの最適化されたチューニングを高速で実現		

QU = クォーツ; SI = シリコン

- DYNAMIC データ

ガルバノユニット	MINISCANⅢ-14-SI		MINISCANII-14-QU	
チューニング	VC	MA	С	MA
書き込み速度[cps]	-	650/800	-	600/750
処理速度[rad/s] ³	30 @ 30 V	30 @ 30 V	70 @ 30 V	30 @ 30 V
Z-222[:dd/5]	50 @ 48 V	30 @ 48 V	100 @ 48 V	30 @ 48 V
位置決め速度[rad/s] ³	30 @ 30 V	60 @ 30 V	70 @ 30 V	60 @ 30 V
	50 @ 48 V	90 @ 48 V	100 @ 48 V	90 @ 48 V
トラッキングエラー[ms]	0.20 4	0.16 5	0.30 ⁶	0.17 5
フルスケールの1%でのステップ応答時間[ms]	0.68 ⁷	0.36 8	0.69 ⁷	0.398

- _______1 F-θレンズ使用時 f = 163 mm / フィールドサイズ 120 mm x 120 mm。2 高さ1mmの一筆書きフォント。3 「速度の計算」を参照
- 4 加速時間の計算 約2.3×トラッキングエラー 5 加速度時間約1.9×トラッキングエラーの計算
- 6 加速度時間約2.0×トラッキング誤差の計算 7 フルスケールの1/5,000に設定。8 フルスケールの1/1000にセトリング。

速度の計算

作業領域の速度= 焦点距離F-シータレンズ×位置決め速度:

例: F-Theta レンズf = 254mm、位置決め速度30rad/s、v = 254/1000 x 30 = 7.6m/s (MINISCAN III-14 SI)

ミラーとレンズ:マウントが最適化されたスキャンミラーと対物レンズは、多くの典型的なレーザータイプ、波長、パワー密度、焦点距離、作業フィールドのすべてで利用可能です。顧客固有の 構成も可能です。

¹ 光学的な角度。軸あたりのドリフト、30 分のウォームアップ後、一定の周囲温度および処理応力で。