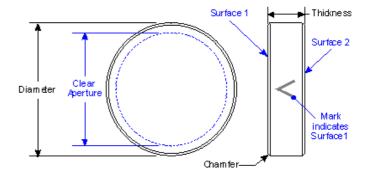

266 nm Solid State Laser Mirrors for 45° Incidence

These high performance mirrors are intended for general purpose beam steering tasks in frequency-quadrupled Nd:YAG and Nd:YVO4 laser based applications and systems.


Advantages

- High reflectivity
- Superior laser damage resistance
- Excellent mechanical durability

0 10 11		
Common Specifications		
Chamfer	0.50 mm at 45°	
Clear Aperture	85%	
Diameter Tolerance	+0.00, -0.13 mm	
Front Surface Flatness	λ/10 at 633 nm	
Material	Fused Silica	
Rear Surface	Commercial Polish	
Surface Quality	10-5	
Thickness Tolerance	±0.25 mm	
Wedge	<5 arc minutes	
Surface 1 Flatness	λ/10 at 633 nm	
Surface 1 Surface Quality	10-5	
Surface 1 Coating	≥95.0% reflectivity at 266 nm	
Surface 1 Angle Of Incidence	45°	
Surface 2 Flatness	Commercial polish	
Surface 2 Surface Quality	Commercial polish	
Surface 2 Coating	None	

Part Number	Diameter	Thickness	
MR2040	25.4	9.525	
MR2080	50.8	9.525	

Alpine Research Optics, 6810 Winchester Circle, Boulder, Colorado 80301 sales@arocorp.com 303-444-3420

Copyright $\ensuremath{@}$ 2006 Alpine Research Optics. All rights reserved.

E-mail: info@optoscience.com