

Features

- Single and stacked devices up to 65 Watts ex fiber
- 905 nm and 1550 nm
- Coupling efficiency up to 85%
- Excellent temperature stability
- Custom versions available

Applications

- Range finding
- Surveying equipment
- Laser radar
- Medical
- DTS

1

905 xx FP-Series

Generic Characteristics at t_{RT} = 21°C

	Min	Тур	Max	Units
Wavelength of peak radiant intensity λ m	895	905	915	nm
Spectral bandwidth Δλ at 50% intensity points		8		nm
Wavelength temperature coefficient		0.27		nm/°C

^{* 8} nm for multi-junction devices

Multi Junction Chips and Stacked Arrays

Stacked chip characteristics at $\rm t_{RT} = 21^{\circ}C,\, t_{W} = 150$ ns, $\rm P_{rr} = 6.66~kHz$

Parameter	905D1S3J03FP- 10/22-F-0-01	905D1S3J09FP- 40/22-F-0-01	905D2S3J09FP- 40/22-F-0-01
Integrated Pulsed Laser Diode	905D1S3J03R	905D1S3J09R	905D2S3J09R
Po ex fiber at i _{FM} , (min.)	12 W	35 W	65 W
Fiber core / cladding diameter	105 µm/125 µm	400 µm/440 µm	400 µm/440 µm
Fiber NA	0.22	0.22	0.22
Max peak forward current i _{FM}	11 A	35 A	35 A
Ith typ	300 mA	800 mA	800 mA

155 xx FP-Series

Generic Characteristics at t_{RT} = 21°C

	Min	Тур	Max	Units
Wavelength of peak radiant intensity λ m	1520	1550	1580	nm
Spectral bandwidth Δλ at 50% intensity points		30		nm
Wavelength temperature coefficient		0.6		nm/°C

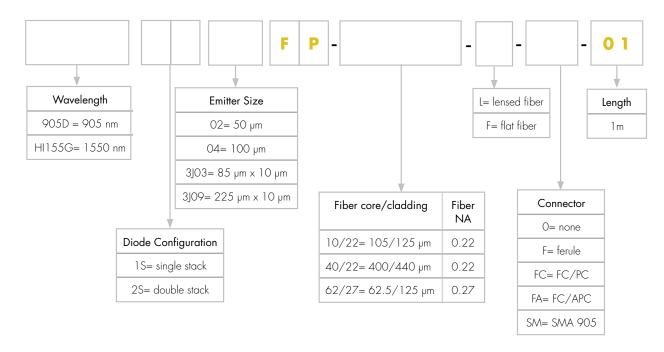
Single Chips

Single chip characteristics at t_{RT} = 21°C, T_{W} = 150 ns, P_{rr} = 3.33 kHz

Parameter	HI155G1S02FP-62/ 27-F-0-01	HI155G1S04FP-10/ 22-L-0-01	HI155G1S04FP-10/ 22-F-0-01
Integrated Pulsed Laser Diode	HI155G1S02R	HI155G1S04R	HI155G1S04R
Po ex fiber at i _{FM} , (min) *	4 W	7 W	5 W
Fiber core / cladding diameter	62.5 µm / 125 µm	105 μm / 125 μm	105 µm / 125 µm
Fiber NA	0.27	0.22	0.22
Max. peak forward current i _{FM}	20 A	30 A	30 A
Ith typ	300 mA	600 mA	600 mA

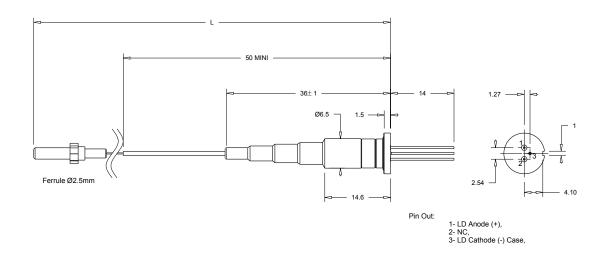
 $^{^*}$ I_{FM} is the maximum peak current under any drive condition and is applicable to devices operated for short and intermittent duration such as in hand held range finders.

For applications that demand continuous use at maximum duty factor, we recommended I_{FM} at 50% to ensure longevity. High temperature operation will reduce peak power and MTTF so for optimal performance under high stress conditions it is important to provide an adequate heat sink.


Absolute Maximum Ratings

Maximum ratings	Limiting values
Peak reverse voltage	6 V
Pulse duration Single element Stacks	1 <i>5</i> 0 ns 1 <i>5</i> 0 ns
Duty factor	0.1%
Temperature Storage Operating	-55°C to +85°C -40°C to +85°C
Lead soldering 5 seconds max at	200°C

Note: Further specifications are available on the individual datasheets of the integrated pulsed laser diode.



Product Number Designation

Note: other fiber types, lengths, and connectors are available upon request. Please contact us for further details.

Package FP Fiber Pigtailed

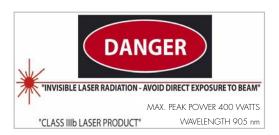
Product Changes

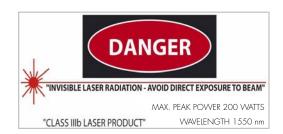
LASER COMPONENTS reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.

Ordering Information

Products can be ordered directly from LASER COMPONENTS or its representatives. For a complete listing of representatives, visit our website at www.lasercomponents.com

Custom designed products are available on request.


Laser Safety


Personal Hazard:

Depending on the mode of operation, these devices emit highly concentrated non visible infrared light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 "Safety of laser products".

Handling Precautions:

Products are subject to the risks normally associated with sensitive electronic devices including static discharge, transients, and overload.

