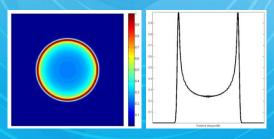


M-Shaper for Scanning Applications

Holo/Or's M-Shaper, is a diffractive optical elements (DOE) used to transform a Gaussian laser beam (or other) into a unique 2D M-shaped intensity profile, with sharp edges in a specific work plane.

Features:

- Round M-Shape output profile (before integration)
- Uniform output intensity profile when integrated over a scanned line
- Sharp beam edge
- High efficiency
- High power threshold
- Wavelengths from UV to IR
- Optional AR/AR coating

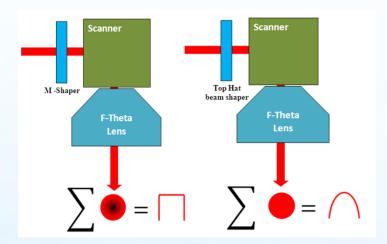

Applications:

- Laser materials processing:
 - welding
 - cutting
 - scribing
- Strong weld seams (also in Plastics)

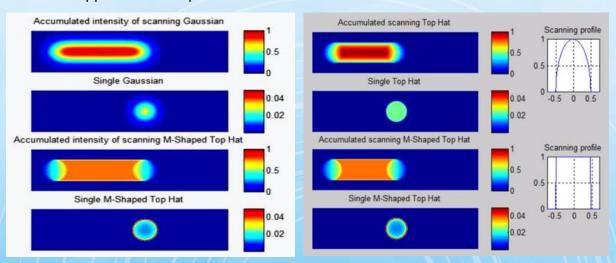
The M-Shaper optical function is not possible by conventional reflective or refractive optical elements. It provides higher quality of the process & enables more flexibility in the system configuration. For example, it allows optimization of the intensity profile, and image size, without changing the laser, fiber cable and/or optic head.

In general, the intensity profile influences the heat distribution during laser material processing. The benefits of our optimized M-shaped intensity profile, in scanning applications (i.e., for the welding process) include:

- Uniform exposure over the scanned line.
- Ensures a defined edge.
- Enables very strong weld seams.


Figure 1 – Simulated intensity profiles of diffractive M-Shaper laser spots (Without integration). Left: upper view; Right: side view.

The Early Pioneer of Diffractive Optics


Design Considerations

- 1. In principal, to get a flat-top scanning profile (as shown in Fig.3), optical designer needs to notice the following points:
 - a. Use a collimated laser beam with DOE.
 - b. Place the DOE before the scanning head
 - c. Use a scanner lens (i.e. F-Theta lens) in order to achieve a wellfocused spot at a certain distance, for all scanning angles, as shown in Fig.2.
 - d. Scan in straight lines.

Figure 2 – Schematic set-up and integrated (Σ) intensity profile across scan direction. Left: with M-Shaper, Right: with flat-top beam shaper.

- 2. Energy distribution can be designed for any non-uniform distribution meeting.
- 3. The application's requirements.

Figure 3 – Left: Gaussian intensity profile vs. M-Shaped profile, in scanning mode. Right: Top-Hat intensity profiles vs. M-Shaped profile.

Specifications:

Materials:	Fused Silica, ZnSe
Wavelength range:	193nm to 10.6um
Full angle:	Large range of full angles
DOE design:	2-level (binary) to 16-level
Diffraction efficiency:	86% - 96%
Element size:	Few mm to 100mm
Coating (optional):	AR/AR Coating
Custom Design:	Almost any size and intensity profile

