II-VI Crystals

CdS, CdTe, ZnS, ZnSe, ZnTe

(Data apply to high-resistivity, nearly intrinsic material at room temperature unless otherwise noted)

Click <u>HERE FIRST</u> for help with your frequency conversion application.

Items below marked with an asterisk * are shown for reference only and are not currently available from CCI.

	CdS	CdSe	CdTe*	ZnS (Hex) ^{(a)*}	ZnS (Cub)*	ZnSe*	ZnTe*
Micron range of >50% transmission (2mm xtal)	0.53 - 15 ⁽⁴¹⁾	0.8 - 18	1 - 28		0.4 - 14	0.5 - 19	0.6 ⁽⁹⁾ - 25
Absorption coeff. @10.6µm (cm ⁻¹)	0.01	0.001	(1			0.005	0.008
Index of refraction ^(b)							
					2.4208 ⁽⁵⁾	2.750 ⁽⁵²⁾	
0.55µm n _o n _e	2.580 2.593 ⁽⁴⁶⁾					2.655 ⁽⁶⁾ 2.670 ⁽⁵²⁾	
0.589µm n _o n _e	2.525 ⁽²⁾			2.356 2.378 ⁽⁴⁾	2.369 ⁽⁴⁾	2.625 ⁽⁵²⁾	3.054 ⁽⁹⁾
n _o n _e	2.465 2.483 ⁽⁴⁶⁾				2.3523 ⁽⁵⁾	(52)	2.984 ⁽⁹⁾
0.70µm n _o n _e	2.414 2.432 ⁽⁴⁶⁾				2.333 ⁽⁵⁾		2.913 ⁽⁹⁾
0.80µm n _o n _e	2.377 2.394 ⁽⁴⁶⁾	2.6448 2.6607 ⁽⁵⁾			2.3146 ⁽⁵⁾		2.853 ⁽⁹⁾
1.00µm n _o n _e	2.336 (46)	2.5502 2.5696 ⁽⁵⁾	2.84 ⁽³⁾		2.2932 ⁽⁵⁾	2.48 ⁽³⁾	2.790 ⁽⁹⁾
1.40µm n _o	2.304 2.321 ⁽⁴⁶⁾	2.4929 2.5133 ⁽⁵⁾			2.2762 ⁽⁵⁾		2.741 ⁽⁹⁾

2 株

_{光技術をサポートする} 株式会社オプトサイ<u>エンス</u> 東 京 本 社 〒160-0014 東京都新宿区内藤町1番地 内藤町ビルディング TEL:03 (3356) 1064 FAX:03 (3356) 3466 E-mail:info@optoscience.com 大 阪 支 店 〒532-0011 大阪市淀川区西中島7-7-2 新大阪ビル西館 TEL:06 (6305) 2064 FAX:06 (6305) 1030 E-mail:osk@optoscience.com 名古屋営業所 〒450-0002 名古屋市中村区名駅2-37-21 東海ソフトビル TEL:052 (569) 6064 FAX:052 (569) 8064 E-mail:ngo@optoscience.com

http://www.optoscience.com

	CdS	CdSe	CdTe*	ZnS (Hex) ^{(a)*}	ZnS (Cub)*	ZnSe*	ZnTe*
n _e							
3.39µm n _o n _e	2.2747 2.2907 ⁽²⁾	2.4562 2.4754 ^{(2)(d)}					
10.6µm n _o n _e	2.226 2.239 ⁽²⁾	2.430 2.448 ^{(2)(d)}	2.6708 ⁽⁵ ₀₎			2.392 ⁽⁷⁾ 2.407 ⁽⁵¹⁾	2.70 ⁽⁸⁾
1/n dn/dT RT(10 ⁻⁵ /°C)							
0.69µm	10.11						
1µm o-ray e-ray		12 12				2.655 ⁽⁶⁾ 2.670 ⁽⁵²⁾	
10.6µm o-ray e-ray	6.0 6.2 ⁽⁴⁸⁾		9.8 ⁽⁴⁹⁾		4.6 ⁽⁴⁹⁾	5.2 ⁽⁴⁹⁾	
Electro-Optic Constants							
r ₄₁ ^T (pm/V) Halfwave Voltage(kV) Wavelength(μm)			4.5 ⁽¹⁰⁾ 5 1.0		-1.5 9.4 0.436	1.9 ⁽⁵⁴⁾ 9.45 0.633	4.51 ⁽⁹⁾ 2.3 0.589
r ₄₁ ^T (pm/V) Halfwave Voltage(kV) Wavelength(μm)			6.8 ⁽⁸⁾ 42 10.6		-2.1 10.7 0.589	1.9 ⁽⁵⁴⁾ 200 10.6	3.9 ⁽¹⁰⁾ 69 10.6
r ₄₁ ^S (pm/V) Wavelength(μm)					1.6 0.633	2.0 ⁽⁸⁾ 0.633	4.3 ⁽⁸⁾ 0.633
r ₄₁ ^S (pm/V) Wavelength(μm)					1.4 3.39		
r₅1 ^T (pm/V) Wavelength(μm)	1.6 ⁽⁴⁴⁾ 0.633						
r ₁₃ ^T (pm/V) Wavelength(μm)	3.1 ⁽⁴⁴⁾ 1.15						
r ₁₃ ^S (pm/V) Wavelength(μm)	1.1 ⁽⁴³⁾ 0.633	1.8 ⁽⁴³⁾ 3.39		0.92 ^(43.45) 0.633			

	CdS	CdSe	CdTe*	ZnS (Hex) ^{(a)*}	ZnS (Cub)*	ZnSe*	ZnTe*
r ₃₃ ^T (pm/V)	3.2 ⁽⁴⁴⁾	1.6 ⁽⁵³⁾					
Wavelength(µm)	1.15	0.8					
r ₃₃ ^S (pm/V)	2.4 ⁽⁴³⁾	4.3 ⁽⁴³⁾		-1.85 ^(43.45)			
Wavelength(µm)	0.633	3.39		0.633			
r _c [⊤] (pm/V)	4.8 ⁽⁴⁴⁾						
Wavelength(µm)	0.633						
r _c ⁻(pm/V) Wavelength(μm)	5.5 ⁽⁴³⁾ 10.6						
NLO							
Susceptibility (pm/V) ^(8,54)							
d ₁₄ @28µm			60				
d ₁₄ @10.6µm ^(f)					30	80	90
d ₃₃ @10.6µm ^(f)	44 ±13	44 ±13	55 ±13	37 ±13			
d ₃₁ @10.6µm ^(f)	-26 ±6	-29 +/6		-19 ±6			
d ₁₅ @10.6µm ^(f)	29 ±7	31 ±8		21 ±8			
d ₁₄ @1.06µm					25	103	108
d ₃₃ @1.06µm	100			44			
d ₃₁ @1.06µm	-16 ±1			-9 ±2			
d ₁₅ @1.06µm	17 ±1			8 ±1			
Piezo-Optic Constants(pm²/N)							
q ₁₁ @10.6µm			-5.91 ±0.21 ⁽¹⁴⁾				
q ₁₂ @10.6µm			2.22 ±0.08 ⁽¹⁴⁾				
q ₄₄			-2.85 ±0.33 ⁽¹⁴⁾ (10.6μm)		-1.70 @0.6µm ⁽⁵ ⁵⁾	-1.45 @0.63µm ⁽ ⁵⁵⁾	-1.62 @0.7µm ⁽⁵ ⁵⁾
Pulsed Damage Threshold (MW/cm ²)		60 ⁽²⁾					
Structure type ⁽¹⁶⁾	Heaxagon	Heaxagon	Cubic	Heaxagon	Cubic	Cubic	Cubic

	CdS	CdSe	CdTe*	ZnS (Hex) ^{(a)*}	ZnS (Cub)*	ZnSe*	ZnTe*
	al Wurtzite	al Wurtzite	Sphalerit e	al Wurtzite	Sphalerit e	Sphalerite	Sphalerit e
Space Group ⁽¹⁶⁾	P6mc	P6mc	F 3m	P6mc ^(a)	F 3m	F 3m	F 3m
Wurtzite Parameter u (ideal=0.375) ⁽¹⁷⁾	0.378	0.377		0.374			
Lattice Constants Å, 25°C	Ref (18)	Ref (18)		Ref (19)	Ref (20)		
a _o c _o	4.1367 ±0.0003 6.7161	4.2972 ±0.0003 7.0064	6.4830 ±0.0004 	3.8218 ±0.0004 6.25875	5.4094 ±0.0002	5.6687 ±0.0003 	6.1034 ±0.0003
Calc'd Density g/cc, 25°C	±0.0005 4.819	±0.0005	5.849	±0.0001 4.087	4.088	5.262	5.636
Cleavage			[110]	[11 0] [10 0]	[110]	[110]	[110]
Thermal Expansion (10 ⁻⁶ /°C) Perp. to c Along c Temp range°C			4.5 ⁽²¹⁾ 50	6.5 ⁽²²⁾ 4.6 ⁽²²⁾ 25	5.9 25-100	7.1 ⁽⁷⁾ 29	8.36 25-100
Thermal Conductivity (W/cm/°C), 25°C			0.06			0.19 ⁽⁵⁶⁾	
Heat Capacity (J/mole/°C)			54 ⁽⁴⁰⁾		47 ⁽²⁴⁾	51 ⁽⁴⁰⁾	51
Melting Point,°C	1397 ±2 ⁽¹⁸⁾	1258 ±2 ⁽¹⁸⁾	1097 ±2	1718 ±10 ⁽²⁵⁾		1526 ±10 ⁽²⁵⁾	1292 ±5
Flexural Strength (psi)	~4000	~3000	~3000	~10000		~8500	~3500
Estimated max. safe operating temp,°C			>200	>200	>200	>200	>200
Dark resistivity							

	CdS	CdSe	CdTe*	ZnS (Hex) ^{(a)*}	ZnS (Cub)*	ZnSe*	ZnTe*
(ohm-cm)							
Typical As-Grown	~2000	~2000	~1000		10 ⁸	10 ⁸	~10
Max. (compensated)	>10 ⁹	>10 ⁹	>10 ⁷		10 ⁹ -10 ¹⁰⁽¹ 1)	10 ⁸ -10 ⁹⁽²³⁾	10 ⁸ -10 ⁹
Minimum	<10 ⁻²	<10 ⁻²	<10 ⁻²			<10 ⁻¹	<10
Туре	n	n	p or n	р	р	n	р
Hall Mobilties (cm ² /V-sec) (highest measured)							
300°K	350(e)	650(e)	1000(e)		100(e)	400(e)	130(h)
80°K	5200(e)	5000(e)	10000(e)			5000(e)	2600(h)
Energy Gap(eV)300°K	2.42 ⁽²⁸⁾	1.72 ⁽²⁹⁾	1.44 ⁽³⁹⁾			2.7	2.23 ⁽³²⁾
dE _G /dT (eV/°K)	-5E-4 ⁽²⁷⁾	-4E-4 ⁽³⁰⁾		3.6			-5.5E-4 ⁽³²)
Effective carrier mass							
Electrons	0.205me ⁽³³⁾	0.130m _e	0.11m _e	0.27m _e		0.17m _e	
Holes	2.1me ⁽³³⁾	0.7m _e	0.63m _e				0.6m _e
Sound velocities,25°C(m /s)							
Longitudinal Waves							
propagation along c particle motion along c	4470	3860					
propagation perp. to c particle motion perp. to c	4340	3610	3020		5060	4040	3560
Transverse Waves							

	CdS	CdSe	CdTe*	ZnS (Hex) ^{(a)*}	ZnS (Cub)*	ZnSe*	ZnTe*
propagation along c particle motion perp. to c	1770	1520	1850		3360	2780	2350
propagation perp. to c particle motion along to c	1800	1530					
propagation perp. to c particle motion perp. to c	1700	1590					
Relative dielectric constant 25°C ⁽³⁴⁾							
33 ^T / o	10.33	10.65		8.00 ⁽⁴¹⁾			
11 ^T / o	9.35	9.70	11.0 ⁽³⁹⁾	8.58 ⁽⁴¹⁾	8.37	9.25 ⁽³⁹⁾	10.10
33 ^T / o	9.53	10.20					
11 ^T / o	9.02	9.53			8.32	9.12	10.10
Piezoelectric Coefficients,25°C							
d ₃₁ (pC/N)	-5.18	-3.92		-1.1 ⁽¹²⁾			
d ₃₃ (pC/N)	10.32	7.87		3.2 ⁽¹²⁾			
d ₁₅ (pC/N)	-13.98	-10.51		-2.8 ⁽¹²⁾			
d ₁₄ (pC/N)			1.54		3.18	1.10	0.91
d _h (pC/N)	0.0	0.0		1.1 ⁽¹²⁾			
e ₃₁ (C/m ²)	-0.244	-0.160		0.10 ⁽²⁶⁾			
e ₃₃ (C/m ²)	0.440	0.347		0.35 ⁽²⁶⁾			
e ₁₅ (C/m ²)	-0.210	-0.138		-0.08 ⁽²⁶⁾			
e ₁₄ (C/m ²)			~0.304		0.147	0.049	0.0284
Piezoelectric Coupling Factors ⁽³⁴⁾							
k ₃₃	0.262	0.194		0.127 ⁽¹²⁾			
k ₃₁	0.1191	0.0836		0.039 ⁽¹²⁾			

	CdS	CdSe	CdTe*	ZnS (Hex) ^{(a)*}	ZnS (Cub)*	ZnSe*	ZnTe*
k ₁₅	0.1885	0.1305		0.052 ⁽¹²⁾			
k _t	0.154	0.124					
k ₁₄			~0.023		0.0795	0.026	0.017
Elastic Constants ⁽³⁴⁾ (10 ⁻¹¹ m ² /N)							
S ₁₁ ^E	2.069	2.338			1.839	2.26	2.40
S ₃₃ ^E	1.697	1.735					
S ₁₂ ^E	-0.999	-1.122			-0.707	-0.85	-0.873
S ₁₃ ^E	-0.581	-0.572					
S ₄₄ ^E	6.649	7.595			2.168	2.27	3.21
S ₆₆	6.136	6.920		~3.12? ⁽³⁵⁾			
S ₁₁ ^D	2.040	2.322		~1.10? ⁽³⁵⁾			
\$ ₃₃ ^D	1.581	1.670		~0.85? ⁽³⁵⁾			
\$ ₁₂ ^D	-1.028	-1.138		~ -0.46 ⁽³⁵⁾			
\$ ₁₃ ^D	-0.523	-0.539		~ -0.21 ⁽³⁵⁾			
S ₄₄ ^D	6.412	7.466		~3.51 ⁽³⁵⁾	2.154	2.27	3.21
C ₁₁ ^E	9.07	7.41	5.351 ⁽³⁶⁾		10.46	8.59 ⁽³⁷⁾	7.13
C ₃₃ ^E	9.38	8.36					
C ₁₂ ^E	5.81	4.52	3.681 ⁽³⁶⁾		6.53	5.06(37)	4.07
C ₁₃ ^E	5.10	3.93					
C ₄₄ ^E	1.504	1.317	1.994 ⁽³⁶⁾		4.613	4.06 ⁽³⁷⁾	3.12
C ₆₆	1.630	1.445		~3.2 ⁽³⁵⁾			
C ₁₁ ^D	9.13	7.42		~12.4 ⁽³⁵⁾		8.59 ⁽³⁷⁾	
C ₃₃ ^D	9.623	8.477		~14.0 ⁽³⁵⁾			
C ₁₂ ^D	5.888	4.53		~6.0 ⁽³⁵⁾		5.06 ⁽³⁷⁾	
C ₁₃ ^D	4.97	3.86		~4.5 ⁽³⁵⁾			
C ₄₄ ^D	1.560	1.340		~2.85 ⁽⁷⁾	4.643	4.06 ⁽³⁷⁾	3.12

We have attempted to be as accurate as possible in gathering data and noting sources, but no guarantees can be made. In general, non-referenced data was internally generated, but it is possible that errors may appear. Apologies are offered to anyone whose data are miscredited. Any suggestions for corrections or additions will be considered for the next revision.

Mixed crystals are available in the systems CdS-CdSe, with properties intermediate between the end members. Inquiries are welcomed. Other mixed crystals are occasionally available, but are more difficult to grow due to lattice and volatility mismatch.

FOOTNOTES

(a) Much of the data in the literature on the "hexagonal" form of ZnS is on polytypes that vary only slightly in bulk properties from the cubic form, although such is frequently not disclosed. We have attempted to evaluate the data on the internal evidence to eliminate those which obviously do not apply to pure wurtzite. The attempt may not have been completely successful. Examples of information on polytypes may be found in reference 12, and reference 8. The data on the cubic form of ZnS are usually on material which is free of polytypes.

(b) References 15 and 50 give formulae for calculating indicies of refraction vs. wavelength for CdSe and CdTe. Cleveland Crystals has determined single resonance dispersion curve-fits to existing data for ZnS and ZnSe and ZnTe. Contact us for more information.

(c) Claculated values.

- (d) Indicies of refraction of uncompensated crystals tend to be lower.
- (e) See refernence 49.
- (f) These values are taken from two refernces (8 and 54), so may not be completely self-consistent.

REFERENCES

- 1) R.L. Herbst and R.L. Beyer, Appl. Phys. Lett. 19,527-30(1971)
- 2) R.L. Beyer, private comminucation.
- 3) D.T.F. Marple, J. Appl. Phys. 35, 539-42(1964)
- 4) C. Palache, H. Berman, and C Frondel, Dana's System of Minerology 7th ed, Vol 1. p211,217 John Wiley and Sons, New York(1944)

5) W.L. Bond, J. Appl. Phys., 36 1674-7(1965)

- 6) R.W. McQuald, Proc. IEEE 50, 2484-5(1962);51, 470(1963);
 K. Tada and M. Aoki, Japan J. Appl. Phys., 10, 998-1001(1971)
- 7) J.R. Jurdock, Summary Report No. AFML TR-74-166, Part 1, Perkin Elmer Corp. (Oct 1974)
- 8) R.J. Pressley, Ed. Handbook of Lasers, Ch 15 by I.P.

Kaminow and E.H. Turner, p447-59 and Ch 18 by S. Singh, p 489-525, Chemical Rubber Publishing Co., Cleveland, Ohio(1971)

- 9) T.R. Sliker and J.M. Jost, J. Opt. Soc. Am. 56,130-1(1966)
- 10) K. Tada and M. Aoki, Japan J. Appl. Phys., 10, 998-1001(1971)
- 11) S. Namba, J. Opt. Soc. Am. 51, 76-9(1961)
- 12) I.B. Kobyakov, Sov. Phys.-Cryst. 11, 369-71(1966)
- 13) A.W. Tucker, M. Birnbaum, H. Mentes, and C.L. Fincher, Appl.Opt. 21, 2920-2(1982)
- 14) R. Well and M.J. Sun, Proc. Int. Symp. CdTe, Mater. Gamma Ray Detectors 1971, XIX 1-6(1972)
- 15) G.C. Bahr, D.C. Hanna, B. Luther-Davies and R.C. Smith, Optics Commun. 6, 323-6(1972)
- J.D.H. Donnay, et al., Editors, Crystal Data, 2nd ed, ACA Monograph No. 5, Washington DC(April 1, 1963).
- 17) G.A. Jeffery, G.S. Perry, and R.L. Mozzi, J. Chem. Phys. 25,1024-31(1956)
- 18) W.R. Cook Jr., J. Am. Ceram. Soc. 51, 518-20(1968)
- 19) W.R. Cook Jr., Norelco Reporter 10 (4), 144-5(1963)
- 20) B.J. Skinner and P.B. Barton Jr., Am. Mineral. 45,612-25(1960)
- 21) W.L. Wolfe, Ed., Handbook of Military Infrared Technology,Superintendent of Documents, U.S. Gov't. Printing Office, Washington DC 20402
- 22) R.R. Reeber and G.W. Powell, J. Appl. Phys. 38, 1531-4(1967)
- 23) G.A. Zholkevich, Soviet Phys.- Solid State 2, 1009(1960)
- 24) A.J. Moses, Optical Materials Properties, IFI/Plenum, New York(1971)
- 25) L.A. Sysoev, et al., Izv. Akad. Nauk SSSR 3, 390-1(1967)
- 26) V.A. Zhdanov and L.A. Brysneva, Sov. Phys. Cryst. 19,223-5(1974)
- 27) C.C. Klick, Phys. Rev. 98, 272(1953)

- 28) M. Balkaivski and R.D. Waldron, Phys. Rev. 112, 123(1958)
- 29) R.G. Wheeler and J.D. Dimmmock, Phys. Rev. 125, 1805(1962)
- 30) R.H. Bube, Phys. Rev. 98, 431(1955)
- J.T. Milek, "Electro-optic Properties and Modulator Applications of Cadmium Telluride", Interim Report No. 75(Revised), Air Force Materials Laboratory (Jan. 1971)
- 32) J.H. Haanstra and C. Haas, Phys. Lett. 2, 21(1961)
- 33) J.J. Hopfield and D.G. Thomas, Phys. Rev. 112, 35-52(1961)
- 34) D. Berlincourt, H. Jaffe, and L.R. Shiozawa, Phys. Rev. 129,1009-17(1963) (The value of 9.33 e_{11}^{S}/e_{o} in the paper was a misprint)
- 35) V.G. Zubov, L.A. Sysoev, and M.M. Firsova, Soviet Phys.-Cryst. 12, 67-70(1967)
- 36) H.J. McSkimin and D.G. Thomas, J. Appl. Phys. 33,56 (1962)
- 37) B.H. Lee, J. Appl. Phys. 41, 2988-90(1970)
- 38) H.P. Singh and B. Dayal, Phys. Staus Solidi 23, K93-5(1967)
- 39) I. Strzalkowski, S. Joshi, and C.R. Crowell, Appl. Phys.Lett. 28, 350-2(1976)
- 40) J.C. Wurst, Univ. of Dayton, Dayton, Ohio, Quarterly Prohgress Report No. 1 (UDR1-QPR-71-10), Contract F33615-72-C-1257, Wright-Patterson Air Force Base, Ohio.
- 41) S.J. Czyzak, H. Payne, W.M. Baker, J.C. Manthuruthil, and T.M. Bieniewski, Univ. Detroit Tech. Rept. No. 6, ONR Contract Nonr 1511 (01), Project No. 015-218 (Sept 1, 1960)
- 42) O.G. Lorimor and W.G. Spitzer, J. Appl. Phys. 36,0841-4(1965)
- 43) I.P. Kaminow and E.H. Turner, Appl. Opt. 5, 1612-28(1960); Proc. IEEE 54, 1374-90(1966)
- 44) M. Sugre and K. Tada, Japan J. Appl. Phys. 15, 421-30(1976)
- 45) R.C. Miller, S.C. Abrahams, R.L. Barnes, J.L. Bernstein, W.A.Nordland, and E.H. Turner, Solid State Commun. 9, 1463-5(1971)

- 46) T.M. Bleniewski and S.J. Czyzak, J. Opt. Soc. Am. 53,496-7(1963)
- 47) M.P. Lisitsa, L.F. Gudymenko, et al., Phys Status Solidi 31,389-99(1969)
- 48) R. Well and D. Neshmit, J. Opt Soc. Am. 67, 190-5(1977)
- 49) R.J. Harris, G.T. Johnson, G.A. Kepple, P.C. Kroc, and H.Mukai, Appl. Opt. 16, 436-8(1977)
- 50) A.G. DeBell, E.L. Dereniak, J. Harvey, J. Nissley, J. Palmer, A. Selvarajan, and W.L. Wolfe, Appl. Opt. 18, 3114-5(1979)
- 51) C.J.C. Thompson, A.G. DeBell and W.L. Wolfe, Appl. Opt. 18,2085-6(1979)
- 52) J.A. Wunderlich and L.G. DeShazer, Appl. Opt. 16,1584-7(1977)
- 53) D.A. Belogurov and Yu.S. Vishnyakov, Opt. Spectrosc. 46,112-3(1979)
- 54) Landolt-Bornstein, New Series, Vol III-11, Springer-Verlag, Berlin(1979)
- 55) Landolt-Bornstein, New Series, Vol III-18, Springer-Verlag, Berlin(1984)
- 56) Photonics Spectra, Nov. 1995, page 101.