OSICS DFB CWDM Distributed Feedback Laser

The OSICS DFB CWDM modules are based on high－performance distributed feedback laser diodes．

20 Channels

Yenista Optics proposes all CWDM channels from 1270 nm to 1610 nm and two additional channels：the first at 1625 nm and the second at 1650 nm ．The channel center of a DFB is located at $\pm 3 \mathrm{~nm}$ from the grid wavelength．

Applications

CWDM

Coarse Wavelength Division Multiplexing is finding its way in many short haul applications such as transmission between antennas．The OSICS DFB CWDM modules allow to fully load the system for testing at maximum capacity．

OSC

The Optical Supervisory Channel is commonly used for communication between optical amplifiers．The 1510 nm or the 1625 nm channels are most used for this application．

OTDR

Optical Time Domain Reflectometry uses widely spaced lasers．It is noted that 1625 nm or 1650 nm can be used when a line is in operation without disturbing traffic．

Key Features

－Internal \＆External Modulation
－+10 dBm optical power coupled in a
 polarization maintaining fiber with a remarkable 5 pm wavelength stability over one hour．
－The internal wavelength calibration yields a 30 pm accuracy and the wavelength can be finely tuned over 1.8 nm （typ．）with the internal temperature control．
－Each module can be controlled from the front panel of the mainframe or through the remote interface．The modules and the mainframe offer a full suite of internal and external modulation capabilities．

Specifications

OSICS DFB CWDM	OSICS DFB CWDM	OSICS DFB CWDM
SMF	PM13	PM15

Models* ${ }^{\text {] }}$	Channels		See channel grid in the Ordering Information table below		
	Grid wavelength of the first channel		1270 nm	1310 nm	1450 nm
	Grid wavelength of the last channel		1650 nm		1650 nm
Wavelength	Channel center*2		wavelength grid $\pm 3 \mathrm{~nm}$		
	Tuning range		1.6 nm (1.8 nm typ.)		
	Accuracy*3		$\pm 0.03 \mathrm{~nm}$		
	Stability over 1 hour*3,*4,*5		$\pm 0.005 \mathrm{~nm}$		
	Stability over 24 hours*3,*4,*5		$\pm 0.005 \mathrm{~nm}$ typ.		
Power	Maximum		10 mW (for channels from 1270 to 1570 nm) 8 mW (for channels from 1590 to 1650 nm)		
	Stability over 1 hour*3,*4,*5		$\pm 0.01 \mathrm{~dB}$		
	Stability over 24 hours*3,*4,*5		$\pm 0.01 \mathrm{~dB}$ typ.		
	Optical Isolation		$>30 \mathrm{~dB}$		
	RIN (Relative Intensity Noise)*6		$<-140 \mathrm{~dB} / \mathrm{Hz}$		
Spectrum	Laser line width		$<10 \mathrm{MHz}$		
	SMSR (Side Mode Suppression Ratio)*3		$>30 \mathrm{~dB}$ (40 dB typ.)		
Modulation	TTL (internal \& external)		1 Hz to 890 kHz		
	Analog (external / front panel)		150 Hz to 150 MHz		
	SBS Suppression (internal)*7	Waveform	sine		
		Frequency Range	10 kHz to 100 kHz		
		Modulation Depth	0 to 15\%		
Interfaces on Module Front Panel*8	Enable key with status LED		Power up laser		
	Optical fiber		SMF	PM13	PM15
	Optical connector		FC/APC narrow key		
	Fiber alignment to connector key		n/a	Slow axis	
	PER (Polarization Extinction Ratio)		n/a	$>17 \mathrm{~dB}$	
	Electrical connector (analog modulation)		Coaxial SMB - 50Ω		
Others	Laser safety		Class 1 M		
	Dimensions (WxHxD)		$35 \times 128 \times 230 \mathrm{~mm}$		
	Weight		1.1 kg		

*1: See the table on following page for complete overview of selectable channels at order.
*2: Conditions: power at $10 \mathrm{dBm}, \mathrm{CW}$ operation, diode temperature at $25^{\circ} \mathrm{C}$.
*3: After warm-up and at maximum power.
*4: At a constant temperature.
*5: Measured with an APC terminated jumper on a power-meter.
*6: RIN within the range $100 \mathrm{MHz}-20 \mathrm{GHz}$ measured at 10 dBm output power with $\mathrm{RBW}=30 \mathrm{kHz}$.
*7: SBS = Stimulated Brillouin Scattering.
*8: See OSICS Mainframe Data Sheet for details on OSICS common specifications and interfaces on the rear panel.

Ordering Information

	Wavelength (nm)																			
Grid	1270	1290	1310	1330	1350	1370	1390	1410	1430	1450	1470	1490	1510	1530	1550	1570	1590	1610	1625	1650
SMF	-	-	-	-	-	\bullet	-	\bullet	-	-	-	-	\bullet	-	-	\bullet	\bullet	-	\bullet	-
PM13			\bullet																	
PM15										\bullet										

